1000 resultados para supernovae: general


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present optical spectra and light curves for three hydrogen-poor superluminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a fewdays aftermaximum light to 100 d later shows them to be fairly typical of this class, with spectra dominated by Ca II, MgII, FeII, and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, Ni-56 decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 d after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models powered by radioactivity require unrealistic parameters to reproduce the observed light curves, as found by previous studies. Both magnetar heating and circumstellar interaction still appear to be viable candidates. A large diversity is emerging in observed tail-phase luminosities, with magnetar models failing in some cases to predict the rapid drop in flux. This would suggest either that magnetars are not responsible, or that the X-ray flux from the magnetar wind is not fully trapped. The light curve of one object shows a distinct rebrightening at around 100 d after maximum light. We argue that this could result either from multiple shells of circumstellar material, or from a magnetar ionization front breaking out of the ejecta.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims
The aim of this paper is twofold: 1) to investigate the properties of extragalactic dust and compare them to what is seen in the Galaxy; 2) to address in an independent way the problem of the anomalous extinction curves reported for reddened Type Ia Supernovae (SN) in connection to the environments in which they explode. 

Methods
The properties of the dust are derived from the wavelength dependence of the continuum polarization observed in four reddened Type Ia SN: 1986G, 2006X, 2008fp, and 2014J. The method is based on the observed fact that Type Ia SN have a negligible intrinsic continuum polarization. This and their large luminosity makes them ideal tools to probe the dust properties in extragalactic environments.

Results
All four objects are characterized by exceptionally low total-to-selective absorption ratios (R<inf>V</inf>) and display an anomalous interstellar polarization law, characterized by very blue polarization peaks. In all cases the polarization position angle is well aligned with the local spiral structure. While SN 1986G is compatible with the most extreme cases of interstellar polarization known in the Galaxy, SN 2006X, 2008fp, and 2014J show unprecedented behaviours. The observed deviations do not appear to be connected to selection effects related to the relatively large amounts of reddening characterizing the objects in the sample.

Conclusions
The dust responsible for the polarization of these four SN is most likely of interstellar nature. The polarization properties can be interpreted in terms of a significantly enhanced abundance of small grains. The anomalous behaviour is apparently associated with the properties of the galactic environment in which the SN explode, rather than with the progenitor system from which they originate. For the extreme case of SN 2014J, we cannot exclude the contribution of light scattered by local material; however, the observed polarization properties require an ad hoc geometrical dust distribution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the last 15 years, the supernova community has endeavoured to directly identify progenitor stars for core-collapse supernovae discovered in nearby galaxies. These precursors are often visible as resolved stars in high-resolution images from space-and ground-based telescopes. The discovery rate of progenitor stars is limited by the local supernova rate and the availability and depth of archive images of galaxies, with 18 detections of precursor objects and 27 upper limits. This review compiles these results (from 1999 to 2013) in a distance-limited sample and discusses the implications of the findings. The vast majority of the detections of progenitor stars are of type II-P, II-L, or IIb with one type Ib progenitor system detected and many more upper limits for progenitors of Ibc supernovae (14 in all). The data for these 45 supernovae progenitors illustrate a remarkable deficit of high-luminosity stars above an apparent limit of log L/L-circle dot similar or equal to 5.1 dex. For a typical Salpeter initial mass function, one would expect to have found 13 high-luminosity and high-mass progenitors by now. There is, possibly, only one object in this time-and volume-limited sample that is unambiguously high-mass (the progenitor of SN2009ip) although the nature of that supernovae is still debated. The possible biases due to the influence of circumstellar dust, the luminosity analysis, and sample selection methods are reviewed. It does not appear likely that these can explain the missing high-mass progenitor stars. This review concludes that the community's work to date shows that the observed populations of supernovae in the local Universe are not, on the whole, produced by high-mass (M greater than or similar to 18 M-circle dot) stars. Theoretical explosions of model stars also predict that black hole formation and failed supernovae tend to occur above an initial mass of M similar or equal to 18 M-circle dot. The models also suggest there is no simple single mass division for neutron star or black-hole formation and that there are islands of explodability for stars in the 8-120 M-circle dot range. The observational constraints are quite consistent with the bulk of stars above M similar or equal to 18 M-circle dot collapsing to form black holes with no visible supernovae.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present ultraviolet, optical and near-infrared data of the Type Ibn supernovae (SNe) 2010al and 2011hw. SN 2010al reaches an absolute magnitude at peak of M-R = -18.86 +/- 0.21. Its early light curve shows similarities with normal SNe Ib, with a rise to maximum slower than most SNe Ibn. The spectra are dominated by a blue continuum at early stages, with narrow P-Cygni He I lines indicating the presence of a slow-moving, He-rich circumstellar medium. At later epochs, the spectra well match those of the prototypical SN Ibn 2006jc, although the broader lines suggest that a significant amount of He was still present in the stellar envelope at the time of the explosion. SN 2011hw is somewhat different. It was discovered after the first maximum, but the light curve shows a double peak. The absolute magnitude at discovery is similar to that of the second peak (M-R = -18.59 +/- 0.25), and slightly fainter than the average of SNe Ibn. Though the spectra of SN 2011hw are similar to those of SN 2006jc, coronal lines and narrow Balmer lines are clearly detected. This indicates substantial interaction of the SN ejecta with He-rich, but not H-free, circumstellar material. The spectra of SN 2011hw suggest that it is a transitional SN Ibn/IIn event similar to SN 2005la. While for SN 2010al the spectrophotometric evolution favours a H-deprived Wolf-Rayet progenitor (of WN-type), we agree with the conclusion of Smith et al. that the precursor of SN 2011hw was likely in transition from a luminous blue variable to an early Wolf-Rayet (Ofpe/WN9) stage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present Hubble Space Telescope (HST) rest-frame ultraviolet imaging of the host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including 11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the superb angular resolution of HST, we characterize the galaxies' morphological properties, sizes, and star formation rate (SFR) densities. We determine the supernova (SN) locations within the host galaxies through precise astrometric matching and measure physical and host-normalized offsets as well as the SN positions within the cumulative distribution of UV light pixel brightness. We find that the host galaxies of H-poor SLSNe are irregular, compact dwarf galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived SFR densities are high ([Sigma(SFR)] similar or equal to 0.1M(circle dot) yr(-1) kpc(-1)), suggesting that SLSNe form in overdense environments. Their locations trace the UV light of their host galaxies, with a distribution intermediate between that of long-duration gamma-ray bursts (LGRBs; which are strongly clustered on the brightest regions of their hosts) and a uniform distribution (characteristic of normal core-collapse SNe), though cannot be statistically distinguished from either with the current sample size. Taken together, this strengthens the picture that SLSN progenitors require different conditions than those of ordinary core-collapse SNe to form and that they explode in broadly similar galaxies as do LGRBs. If the tendency for SLSNe to be less clustered on the brightest regions than are LGRBs is confirmed by a larger sample, this would indicate a different, potentially lower-mass progenitor for SLSNe than LRGBs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Pan-STARRS1 (PS1) survey has obtained imaging in five bands (grizyP1) over 10 Medium Deep Survey (MDS) fields covering a total of 70 square degrees. This paper describes the search for apparently hostless supernovae (SNe) within the first year of PS1 MDS data with an aim of discovering superluminous supernovae (SLSNe). A total of 249 hostless transients were discovered down to a limiting magnitude of MAB ∼ 23.5, of which 76 were classified as Type Ia supernovae (SNe Ia). There were 57 SNe with complete light curves that are likely core-collapse SNe (CCSNe) or type Ic SLSNe and 12 of these have had spectra taken. Of these 12 hostless, non-Type Ia SNe, 7 were SLSNe of type Ic at redshifts between 0.5 and 1.4. This illustrates that the discovery rate of type Ic SLSNe can be maximized by concentrating on hostless transients and removing normal SNe Ia. We present data for two possible SLSNe; PS1-10pm (z = 1.206) and PS1-10ahf (z = 1.1), and estimate the rate of type Ic SLSNe to be between 3+3−2×10−53+3−2×10−53+3−2×10−5 and 8+2−1×10−58+2−1×10−58+2−1×10−5 that of the CCSN rate within 0.3 ≤ z ≤ 1.4 by applying a Monte Carlo technique. The rate of slowly evolving, type Ic SLSNe (such as SN2007bi) is estimated as a factor of 10 lower than this range.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Measurements of explosive nucleosynthesis yields in core-collapse supernovae provide tests for explosion models. We investigate constraints on explosive conditions derivable from measured amounts of nickel and iron after radioactive decays using nucleosynthesis networks with parameterized thermodynamic trajectories. The Ni/Fe ratio is for most regimes dominated by the production ratio of Ni-58/(Fe-54 + Ni-56), which tends to grow with higher neutron excess and with higher entropy. For SN 2012ec, a supernova (SN) that produced a Ni/Fe ratio of 3.4 +/- 1.2 times solar, we find that burning of a fuel with neutron excess eta approximate to 6 x 10(-3) is required. Unless the progenitor metallicity is over five times solar, the only layer in the progenitor with such a neutron excess is the silicon shell. SNe producing large amounts of stable nickel thus suggest that this deep-lying layer can be, at least partially, ejected in the explosion. We find that common spherically symmetric models of M-ZAMS less than or similar to 13 M-circle dot stars exploding with a delay time of less than one second (M-cut < 1.5 M-circle dot) are able to achieve such silicon-shell ejection. SNe that produce solar or subsolar Ni/Fe ratios, such as SN 1987A, must instead have burnt and ejected only oxygen-shell material, which allows a lower limit to the mass cut to be set. Finally, we find that the extreme Ni/Fe value of 60-75 times solar derived for the Crab cannot be reproduced by any realistic entropy burning outside the iron core, and neutrino-neutronization obtained in electron capture models remains the only viable explanation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the use of type Ic superluminous supernovae (SLSN Ic) as standardizable candles and distance indicators. Their appeal as cosmological probes stems from their remarkable peak luminosities, hot blackbody temperatures, and bright rest-frame ultraviolet emission. We present a sample of 16 published SLSN, from redshifts 0.1 to 1.2, and calculate accurate K corrections to determine uniform magnitudes in 2 synthetic rest-frame filter bandpasses with central wavelengths at 400 nm and 520 nm. At 400 nm, we find an encouragingly low scatter in their uncorrected, raw mean magnitudes with M(400) = -21.86 ± 0.35 mag for the full sample of 16 objects. We investigate the correlation between their decline rates and peak magnitude and find that the brighter events appear to decline more slowly. In a manner similar to the Phillips relation for type Ia SNe (SNe Ia), we define a ΔM 20 decline relation. This correlates peak magnitude and decline over 20 days and can reduce the scatter in standardized peak magnitudes to ±0.22 mag. We further show that M(400) appears to have a strong color dependence. Redder objects are fainter and also become redder faster. Using this peak magnitudecolor evolution relation, a surprisingly low scatter of between ±0.08 mag and ±0.13 mag can be found in peak magnitudes, depending on sample selection. However, we caution that only 8 to 10 objects currently have enough data to test this peak magnitudecolor evolution relation. We conclude that SLSN Ic are promising distance indicators in the high-redshift universe in regimes beyond those possible with SNe Ia. Although the empirical relationships are encouraging, the unknown progenitor systems, how they may evolve with redshift, and the uncertain explosion physics are of some concern. The two major measurement uncertainties are the limited numbers of low-redshift, well-studied objects available to test these relationships and internal dust extinction in the host galaxies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present grizP1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields w = -1.120+0.360-0.206(Stat)+0.2690.291(Sys). When combined with BAO+CMB(Planck)+H0, the analysis yields ΩM = 0.280+0.0130.012 and w = -1.166+0.072-0.069 including all identified systematics. The value of w is inconsistent with the cosmological constant value of -1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H0 constraint, though it is strongest when including the H0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find w = -1.124+0.083-0.065, which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ∼three times as many SNe should provide more conclusive results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present optical photometry and spectra of the superluminous Type II/IIn supernova (SN) CSS121015:004244+132827 (z = 0.2868) spanning epochs from -30 d (rest frame) to more than 200 d after maximum. CSS121015 is one of the more luminous SNe ever found and one of the best observed. The photometric evolution is characterized by a relatively fast rise to maximum (~40 d in the SN rest frame), and by a linear post-maximum decline. The light curve shows no sign of a break to an exponential tail. A broad Hα is first detected at ~+40 d (rest frame). Narrow, barely resolved Balmer and [O iii] 5007 Å lines, with decreasing strength, are visible along the entire spectral evolution. The spectra are very similar to other superluminous supernovae (SLSNe) with hydrogen in their spectrum, and also to SN 2005gj, sometimes considered Type Ia interacting with H-rich circumstellar medium. The spectra are also similar to a subsample of H-deficient SLSNe. We propose that the properties of CSS121015 are consistent with the interaction of the ejecta with a massive, extended, opaque shell, lost by the progenitor decades before the final explosion, although a magnetar-powered model cannot be excluded. Based on the similarity of CSS121015 with other SLSNe (with and without H), we suggest that the shocked-shell scenario should be seriously considered as a plausible model for both types of SLSN. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 ≲ z ≲ 1.6, and is the first comprehensive host galaxy study of this specific subclass of cosmic explosions. Combining the multi-band photometry and emission-line measurements, we determine the luminosities, stellar masses, star formation rates, and metallicities. We find that, as a whole, the hosts of SLSNe are a low-luminosity (〈MB 〉 ≈ -17.3 mag), low stellar mass (〈M〉 ≈ 2 × 108 M) population, with a high median specific star formation rate (〈sSFR〉 ≈ 2 Gyr-1). The median metallicity of our spectroscopic sample is low, 12 + log (O/H) ≈ 8.35 ≈ 0.45 Z, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR, and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly spinning magnetar in SLSNe and an accreting black hole in LGRBs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present optical and infrared monitoring data of SN 2012hn collectedby the Public European Southern Observatory Spectroscopic Survey forTransient Objects. We show that SN 2012hn has a faint peak magnitude(MR ˜ -15.65) and shows no hydrogen and no clearevidence for helium in its spectral evolution. Instead, we detectprominent Ca II lines at all epochs, which relates this transient topreviously described `Ca-rich' or `gap' transients. However, thephotospheric spectra (from -3 to +32 d with respect to peak) of SN2012hn show a series of absorption lines which are unique and a redcontinuum that is likely intrinsic rather than due to extinction. Linesof Ti II and Cr II are visible. This may be a temperature effect, whichcould also explain the red photospheric colour. A nebular spectrum at+150 d shows prominent Ca II, O I, C I and possibly Mg I lines whichappear similar in strength to those displayed by core-collapsesupernovae (SNe). To add to the puzzle, SN 2012hn is located at aprojected distance of 6 kpc from an E/S0 host and is not close to anyobvious star-forming region. Overall SN 2012hn resembles a group offaint H-poor SNe that have been discovered recently and for which aconvincing and consistent physical explanation is still missing. Theyall appear to explode preferentially in remote locations offset from amassive host galaxy with deep limits on any dwarf host galaxies,favouring old progenitor systems. SN 2012hn adds heterogeneity to thissample of objects. We discuss potential explosion channels includingHe-shell detonations and double detonations of white dwarfs as well aspeculiar core-collapse SNe.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The progenitors of many Type II core-collapse supernovae (SNe) have now been identified directly on pre-discovery imaging. Here, we present an extensive search for the progenitors of Type Ibc SNe in all available pre-discovery imaging since 1998. There are 12 Type Ibc SNe with no detections of progenitors in either deep ground-based or Hubble Space Telescope archival imaging. The deepest absolute BVR magnitude limits are between -4 and - 5 mag. We compare these limits with the observed Wolf-Rayet population in the Large Magellanic Cloud and estimate a 16 per cent probability that we have failed to detect such a progenitor by chance. Alternatively, the progenitors evolve significantly before core-collapse or we have underestimated the extinction towards the progenitors. Reviewing the relative rates and ejecta mass estimates from light-curve modelling of Ibc SNe, we find both incompatible with Wolf-Rayet stars with initial masses >25 M⊙ being the only progenitors. We present binary evolution models that fit these observational constraints. Stars in binaries with initial masses ≲ 20 M⊙ lose their hydrogen envelopes in binary interactions to become low-mass helium stars. They retain a low-mass hydrogen envelope until ≈104 yr before core-collapse; hence, it is not surprising that Galactic analogues have been difficult to identify.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present optical and near-infrared (NIR) photometry and NIR spectroscopy of SN 2004am, the only optically detected supernova (SN) in M82. These demonstrate that SN 2004am was a highly reddened Type II-P SN similar to the low-luminosity Type II-P events such as SNe 1997D and 2005cs. We show that SN 2004am was located coincident with the obscured super star cluster M82-L, and from the cluster age infer a progenitor mass of 12{^{+ 7}_{- 3}} M⊙. In addition to this, we present a high spatial resolution Gemini-North Telescope K-band adaptive optics image of the site of SN 2008iz and a second transient of uncertain nature, both detected so far only at radio wavelengths. Using image subtraction techniques together with archival data from the Hubble Space Telescope, we are able to recover a NIR transient source coincident with both objects. We find the likely extinction towards SN 2008iz to be not more than AV ˜ 10. The nature of the second transient remains elusive and we regard an extremely bright microquasar in M82 as the most plausible scenario.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the results of a three-year-long dedicated monitoring campaign of a restless luminous blue variable (LBV) in NGC 7259. The object, named SN 2009ip, was observed photometrically and spectroscopically in the optical and near-infrared domains. We monitored a number of erupting episodes in the past few years, and increased the density of our observations during eruptive episodes. In this paper, we present the full historical data set from 2009 to 2012 with multi-wavelength dense coverage of the two high-luminosity events between 2012 August and September. We construct bolometric light curves and measure the total luminosities of these eruptive or explosive events. We label them the 2012a event (lasting ~50 days) with a peak of 3 × 1041 erg s-1, and the 2012b event (14 day rise time, still ongoing) with a peak of 8 × 1042 erg s-1. The latter event reached an absolute R-band magnitude of about -18, comparable to that of a core-collapse supernova (SN). Our historical monitoring has detected high-velocity spectral features (~13,000 km s-1) in 2011 September, one year before the current SN-like event. This implies that the detection of such high-velocity outflows cannot, conclusively, point to a core-collapse SN origin. We suggest that the initial peak in the 2012a event was unlikely to be due to a faint core-collapse SN. We propose that the high intrinsic luminosity of the latest peak, the variability history of SN 2009ip, and the detection of broad spectral lines indicative of high-velocity ejecta are consistent with a pulsational pair-instability event, and that the star may have survived the last outburst. The question of the survival of the LBV progenitor star and its future fate remain open issues, only to be answered with future monitoring of this historically unique explosion.